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Abstract The extent of genome redundancy exhibited by

Brassica species provides a model to study the evolutionary

fate of multi-copy genes and the effects of polyploidy in

economically important crops. Phytoene synthase (PSY)

catalyzes the first committed reaction of the carotenoid

biosynthetic pathway, which has been shown to be rate-

limiting in Brassica napus seeds. In Arabidopsis thaliana, a

single PSY gene (AtPSY) regulates phytoene synthesis in

all tissues. Considering that diploid Brassica genomes

contain three Arabidopsis-like subgenomes, the objectives

of the present work were to determine whether PSY gene

families exist in B. napus (AACC) and its diploid pro-

genitor species, Brassica rapa (AA) and Brassica oleracea

(CC); to establish the level of retention of Brassica PSY

genes; to map PSY gene family members in the A and C

genomes and to compare Brassica PSY gene expression

patterns. A total of 12 PSY homologues were identified, 6

in B. napus (BnaX.PSY.a-f) and 3 in B. rapa (BraA.PSY.

a-c) and B. oleracea (BolC.PSY.a-c). Indeed, with six

members, B. napus has the largest PSY gene family

described to date. Sequence comparison between AtPSY

and Brassica PSY genes revealed a highly conserved gene

structure and identity percentages above 85% at the coding

sequence (CDS) level. Altogether, our data indicate that

PSY gene family expansion preceded the speciation of

B. rapa and B. oleracea, dating back to the paralogous sub-

genome triplication event. In these three Brassica species, all

PSY homologues are expressed, exhibiting overlapping

redundancy and signs of subfunctionalization among pho-

tosynthetic and non-photosynthetic tissues. This evidence

supports the hypothesis that functional divergence of PSY

gene expression facilitates the accumulation of high levels of

carotenoids in chromoplast-rich tissues. Thus, functional

retention of triplicated Brassica PSY genes could be at least

partially explained by the selective advantage provided by

increased levels of gene product in floral organs. A better

understanding of carotenogenesis in Brassica will aid in the

future development of transgenic and conventional cultivars

with carotenoid-enriched oil.

Introduction

The Brassiceae is one of the most phenotypically diverse

tribes within the Brassicaceae family and comprises

approximately 240 species, including important Brassica

crops. Brassica napus L. (AACC; n = 19), the second

largest oilseed crop worldwide (FAO 2011) is believed to

have originated from the interspecific hybridization of two

base ‘‘diploid’’ genomes, Brassica rapa L. (AA; n = 10)

and Brassica oleracea L. (CC; n = 9) (U 1935; Iniguez-
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Luy and Federico 2011). These diploid progenitors are

considered to be ancient polyploids and still exhibit highly

replicated genomes, each containing three paralogous

subgenomes (Lysak et al. 2005; Parkin et al. 2005; Xiong

et al. 2011). These Brassica subgenomes are closely related

to that of Arabidopsis thaliana (Lysak et al. 2005; Parkin

et al. 2005) with high nucleotide sequence similarity found

at the coding sequence (CDS) level; similarity that has

provided an opportunity to use comparative genomics with

A. thaliana to study the effects of polyploidy in the phe-

notypic divergence of the Brassiceae.

Most comparative studies have confirmed the exten-

sive triplication at the genome level in diploid Brassicas,

but gene contents were found to be variable, with para-

logous regions exhibiting interspersed gene losses and

insertions (O’Neill and Bancroft 2000; Rana et al. 2004;

Park et al. 2005; Town et al. 2006; Yang et al. 2006).

Interestingly, less than 10% of CDS of predicted gene

models from A. thaliana were found to be retained as

syntenic orthologues in each of the triplicated subge-

nomes in the recently sequenced B. rapa genome

(Brassica rapa Genome Sequencing Project Consortium

2011). Thus, it is important to study on case-by-case

basis those gene families that have been retained in spite

of diploidization, a process by which a genome tends to

return to its original gene complement, as previously

reported (Yang et al. 2006).

Carotenoids are isoprenoid compounds synthesized by

all photosynthetic organisms. In plants, carotenoids are

synthesized and accumulated in plastids. They are found

in chloroplasts of green tissues where they play vital roles

in light harvesting and energy transfer preventing photo-

oxidation during photosynthesis (Demmig-Adams and

Adams 2002). Large amounts of carotenoids also accu-

mulate in chromoplasts of mature fruits and flowers

where they serve as pigments and precursors to a range of

scents that attract pollinators and secure seed dispersal

(Demmig-Adams et al. 1996). The role that carotenoids

play in seed and root tissues is related to their function as

precursors of the plant hormone abscisic acid (ABA)

(Maluf et al. 1997; Hirschberg 2001). Several studies

have shown that root carotenogenesis regulates the stress-

induced production of ABA in response to drought and

salt stress (Li et al. 2008b; Welsch et al. 2008; Arango

et al. 2010).

Phytoene synthase (PSY) catalyzes the first committed

reaction of the carotenoid biosynthetic pathway, the head

to head condensation of two geranylgeranyl diphosphate

(GGPP) molecules. Since GGPP also serves as a precursor

of tocopherols, chlorophylls, plastoquinones and gibberel-

lins, PSY regulation is highly controlled (von Lintig et al.

1997; Welsch et al. 2000, 2003; Rodrı́guez-Villalón

et al. 2009; Cazzonelli and Pogson 2010; Toledo-Ortiz

et al. 2010). PSY is encoded by a single copy gene in A.

thaliana, therefore the flexibility and response capabilities

of the carotenoid biosynthetic pathway are limited to reg-

ulating this rate controlling enzyme (Cazzonelli and Pog-

son 2010). Most plant species, however, seem to have a

PSY gene family composed of two or three homologous

genes (Bartley et al. 1992; Bartley and Scolnik 1993;

Busch et al. 2002; Gallagher et al. 2004; Li et al. 2008a;

Arango et al. 2010). In these plant species, functional

diversification of PSY homologues provided a mechanism

that allowed for the accumulation of carotenoids in non-

photosynthetic tissues, mainly fruits, seeds and flowers,

and also to respond to environmental stress (Li et al.

2008b; Welsch et al. 2008).

The objectives of the present work were to determine

whether PSY gene families exist in B. napus and its diploid

progenitor species, B. rapa and B. oleracea; to establish the

level of retention of Brassica PSY genes; to map PSY gene

family members in the A and C genomes and to compare

Brassica PSY gene expression patterns. Undoubtedly,

expression studies of retained multicopy genes in Brassica

species should provide insight into the functional and

evolutionary effects that gene duplication and polyploidy

had on Brassica crop evolution. In addition, a better

understanding of carotenogenesis will aid in the future

development of transgenic and conventional B. napus

cultivars with carotenoid-enriched oil.

Materials and methods

Plant materials and nucleic acid extractions

Brassica rapa cv. R500, a highly inbred annual yellow

sarson, B. oleracea TO1000DH3, a double haploid rapid

cycling line (Iniguez-Luy et al. 2009), B. napus cv. Westar

and A. thaliana Col-0 were grown in a controlled green-

house under 16-h-day/8-h-night cycle. For genomic DNA

(gDNA) extraction, flower buds from each species were

harvested and lyophilized. DNA isolation was conducted

following the CTAB procedure described by Kidwell and

Osborn (1992). For RNA extractions, the following vege-

tative tissues were collected: cotyledons, seedlings with

3–4 true leaves, young leaves from mature plants, roots

from 10-day seedlings, developing seeds from 4 stages (S1:

early stage, day 7 after petals fall; S2: elongating pod,

day 14; S3: pods reach final size, day 21 and S4: ripening

begins, day 28). Floral tissues included anthers and petals

from three developmental stages (S1: green bud stage, S2:

yellow bud stage and S3: fully expanded petals). Total

RNA from all tissues was extracted using RNA-Solv

Reagent (Omega Bio-Tek, Norcross, GA, USA) following

the manufacturer’s instructions.
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Cloning of PSY genes from Brassica

The Arabidopsis PSY gene (At5g17230) sequence was used

to query the Brassica EST database in GenBank (National

Center for Biotechnology Information) using the megablast

program (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to iden-

tify putative Brassica PSY homologues. Based on these

sequences, specific oligonucleotide primers (Supplemental

Table S1) were designed in the web-based program

GeneFisher (http://bibiserv.techfak.uni-bielefeld.de/gene

fisher2/) to amplify Brassica gDNA sequences using high

fidelity enzymes, Phusion� High-Fidelity DNA Polymer-

ase (Finnzymes, Espoo, Finland) or KOD Hot Start DNA

Polymerase (Novagen, Madison, WI, USA) according to

the manufacturer’s instructions. Specific PCR products

were cloned using the StrataClone Blunt PCR Cloning Kit

(Agilent Technologies, Santa Clara, CA, USA) or pGEM-T

Easy Vector System (Promega, Madison, WI, USA) and at

least 10 colonies per clone were sequenced.

Brassica PSY gene sequences described in this paper

have been submitted to GenBank under the following

accession numbers: BraA.PSY.a-c: JF920031-JF920033,

BolC.PSY.a-c: JF920034-JF920036 and BnaX.PSY.a-f:

JF920037-JF920042.

Single-strand conformation polymorphism (SSCP)

analysis

A primer pair (BnPSY SSCP1F and BnPSY SSCP1R;

Supplemental Table S1) was designed to amplify a con-

served Brassica PSY region comprising part of exon 1.

Amplicon sizes varied among different Brassica PSY genes

but were approximately 250 bp in length. PCR reactions

(50 ll) were carried out using GoTaq Flexi DNA Poly-

merase (Promega, Madison, WI, USA). Amplification

started with a 95�C denaturation step (5 min), followed by

30 cycles of 30 s at 95�C, 30 s at 45�C, and 30 s at 72�C,

with a final 72�C extension of 5 min. The resulting PCR

fragments were gel-purified (E.Z.N.A. Gel Extraction Kit,

Omega Bio-Tek, Norcross, GA, USA) and eluted in 15 ll

for subsequent SSCP analysis. For purified PCR products

derived from gDNAs, 5 ll was added to 15 ll of SSCP

loading buffer [95% formamide, 10 mm NaOH, 0.25% (w/

v) xylene cyanol, 0.25% (w/v) bromophenol blue], whereas

for PCR products derived from PSY clones (plasmids),

0.8 ll was mixed with 15 ll of loading buffer. Purified

PCR products were then heated for 10 min at 96�C and

immediately cooled on ice. A total of 9 ll of each sample

was loaded onto a 0.79 mutation detection enhancement

gel (MDE; Lonza, Rockland, ME, USA) for B. rapa and

B. napus and 0.59 for B. oleracea. Samples were elec-

trophoresed at 7 W constant power for 20 h at room tem-

perature in a Fisher scientific sequencing apparatus.

Following electrophoresis, gels were silver-stained

according to Bassam et al. (1991) with some modifications.

Briefly, gels were fixed in acetic acid 10% (30 min),

washed in distilled water (20 min), soaked 30 min in silver

nitrate (1 g/l), formaldehyde (0,06%), rinsed quickly in

distilled water, and developed in a chilled solution of

sodium carbonate (30 g/l), formaldehyde (0.06%) and

sodium thiosulfate (1 mg/l). Development was stopped in

10% acetic acid solution.

Southern blot analysis

Southern blot analysis was conducted as described in Ini-

guez-Luy et al. (2009) with minor modifications. Briefly,

12 lg of gDNA from each species was digested to com-

pletion with EcoRI and EcoRV in separate reactions using 8

units enzyme/lg of DNA. Digests were electrophoresed in

0.8% agarose gels (19 TAE), run for 16 h at 40 V and then

transferred onto Amersham Hybond-XL membranes (GE

Healthcare, UK) using an alkaline transfer method. The

DNA was fixed to the membrane by UV crosslinking fol-

lowed by 2 h in a 90�C vacuum oven. One probe (Bna-

PSY73, 611 bp) was amplified by PCR using BnPSY15F

and BnPSY18R primers (Supplemental Table S1). Probe

labeling was conducted using the RediPrime II labeling kit

(GE Healthcare, UK) and 25 ng of PCR product. Hybrid-

ization was carried out using modified Church and Gilbert

buffer (0.5 M phosphate buffer, pH 7.2, 7% SDS, 10 mM

EDTA) at 65�C overnight. The blot was washed in 65�C 29

SSC/0.1% SDS for 10 min at room temperature.

RT-PCR and cDNA-SSCP analysis

Total RNA (2 lg) from all tissues were treated with RQ1

DNAse (Promega, Madison, WI, USA) for 1 h at 37�C.

First strand cDNA synthesis was carried out with oligo(dT)

primer and M-MuLV reverse transcriptase in the presence

of RNase inhibitor (New England BioLabs, Beverly, MA,

USA), according to the manufacturer’s instructions. Con-

tamination of cDNA samples with gDNA was tested by

PCR for ACTIN (AF111812) with a primer pair (BnActinF

and BnActinR; Supplemental Table S1) that generates a

predicted 725-bp fragment for the cDNA and a 900-bp

fragment for gDNA due to the presence of an intron. PCR

reactions (100 ll) and SSCP analysis for every tissue were

carried out as described above, with a single modification.

For purified PCR products derived from cDNAs, 6 ll was

added to 12 ll of SSCP loading buffer.

Sequence analysis

To estimate gene copy number in each Brassica species,

sequencing reads from cloned PSY genes were assembled
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with the Phred/Phrap/Consed software package (Ewing and

Green 1998; Ewing et al. 1998; Gordon et al. 1998).

Nucleotide and protein sequence alignments were per-

formed using ClustalW2 (Chenna et al. 2003). Gene

structures were predicted based on alignments of the Ara-

bidopsis PSY gene (At5g17230) to genomic and coding

sequences and each Brassica PSY assembled gene

(BraA.PSY.a-c, BolC.PSY.a-c and BnaX.PSY.a-f). Alter-

natively, gene structures were predicted in FGENESH

(http://mendel.cs.rhul.ac.uk/mendel.php?topic=fgen) using

the dicot trained matrix. The presence of chloroplast transit

peptides was predicted using the ChloroP 1.1 server

(Emanuelsson et al. 1999). Repetitive sequences were

identified in RepeatMasker (http://www.repeatmasker.org/

cgi-bin/WEBRepeatMasker) using the A. thaliana library.

Amino acid variability was calculated in the Protein Var-

iability Server (PVS) (Garcia-Boronat et al. 2008) using the

Wu-Kabat coefficient (Kabat et al. 1977). A phylogenetic

tree was obtained by analyzing the nucleotide sequence

divergence of Brassica PSY genes using the neighbor-

joining method (Saitou and Nei 1987) implemented in

MEGA4 software (Tamura et al. 2007). Nucleotide

replacement (Ka) and synonymous (Ks) substitutions were

estimated using K-estimator 6.1 (Comeron 1999).

Genetic mapping of the B. rapa and B. oleracea PSY

paralogues

A subset of 50 lines from two previously described map-

ping populations, BraIRRi and BolTBDH (Iniguez-Luy

et al. 2009), were genotyped using five sets of informative

primer combinations (Supplemental Table S1) that yielded

specific fragments for each of the six Brassica PSY para-

logues. PCR amplification and gel electrophoresis were

carried out as described in previous sections. Linkage

analysis and map construction were conducted separately

for each population using JoinMap� v4.0 (Van Ooijen

2006). Briefly, linked loci were grouped using a LOD

threshold of 5 and a maximum recombination fraction of

0.4. Grouped RFLP, SSR and specific PSY gene marker

loci were designated using the international linkage group/

chromosomes nomenclature as described by Iniguez-Luy

et al. (2009). Map distances in centiMorgans (cM) were

calculated using the Kosambi mapping function.

Results

Cloning and copy number estimation of Brassica PSY

genes

In A. thaliana, phytoene synthase (PSY) is encoded by a

single copy gene (AtPSY, At5g17230) located in the top

arm of AtChr5 (Scolnik and Bartley 1994). This chromo-

somal region containing AtPSY (At5G07410–At5G18280)

has been found to be triplicated in diploid Brassica gen-

omes (Osborn et al. 1997; Lysak et al. 2005, Parkin et al.

2005). Based on synteny information, we identified in

silico three collinear regions of predicted PSY gene loci by

extrapolating position from adjacent loci and markers in

the A and C genomes. These regions were found at chro-

mosomes A2, A3 and A10 of B. rapa; C2, C3 and C9 of

B. oleracea and A2, A3, A10, C2, C3 and C9 of B. napus.

However, deletions of at least one of the triplicated genes

are common at the microsyntenic level (Town et al. 2006).

Therefore, PSY copy number could only be determined

empirically, since fully assembled A and C genome

sequences were not available at the time of beginning our

work. In order to estimate PSY gene copy numbers in

B. napus and its diploid progenitors, we followed different

approaches including gene cloning, DNA-SSCP and

Southern blot analyses.

We queried the GenBank B. napus EST database and

identified 44 ESTs with at least 80% sequence identity to

AtPSY full length cDNA (data not shown). Primers were

designed (Supplemental Table S1) using this sequence

information and different primer combinations were

assayed in PCR reactions. A total of 53 amplicons were

cloned for B. rapa, 44 for B. oleracea and 134 for B. napus.

Sequencing reads from these cloned Brassica PSY genomic

sequences were assembled into contigs. As a result, a total

of 12 PSY genes were identified, 6 in B. napus (BnaX.P-

SY.a-f) and 3 in each of its progenitor species, B. rapa

(BraA.PSY.a-c) and B. oleracea (BolC.PSY.a-c). Brassica

PSY genes were named according to the rules of systematic

gene nomenclature proposed by Ostergaard and King

(2008).

DNA-SSCP analyses were also performed to estimate

PSY gene copy number in these three Brassica species.

PCR amplicons spanning part of PSY exon 1 (*250 bp)

were resolved on MDE gels. Banding patterns obtained

from B. rapa, B. oleracea and B. napus genomic DNAs

(gDNA) were compared to those obtained from cloned

Brassica PSY genes (Fig. 1). Similarly, this second

approach revealed the existence of at least 6 PSY homol-

ogous genes in B. napus (AACC) and 3 PSY paralogues in

each of the two diploid species carrying the parental gen-

omes, B. rapa (AA) and B. oleracea (CC).

Southern blot analysis further verified that PSY belongs

to a gene family in B. napus and its two diploid progenitor

species. A 611 bp probe comprising part of exon 1, intron 1

and exon 2 of BnaA.PSY.b was used to hybridize gDNAs

digested with EcoRI and EcoRV (Fig. 2). Hybridization

patterns for EcoRI digests confirmed that PSY is a single

copy gene in Arabidopsis also detecting two bands in

B. rapa and B. oleracea and three in B. napus. Hybridization
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patterns for EcoRV digests correlated with the number of

genes cloned in this study, detecting three bands in B. rapa and

B. oleracea and six in B. napus.

Brassica PSY gene sequence analysis

We have cloned and sequenced 12 Brassica PSY genomic

sequences (gDNA) ranging from 1,272 to 2,503 bp (Table 1).

These regions contained six partial and six complete coding

sequences (CDS) that ranged from 733 to 1,275 bp (Table 1).

Sequence analysis of AtPSY and these 12 Brassica PSY genes

revealed a strong conservation of gene structure, all full length

ORFs containing 6 exons and 5 introns (Table 1; Fig. 3a).

Exons exhibited identical or similar size (bp) whereas intron

lengths were found to be less conserved, as expected

(Table 1). Noticeably, BraA.PSY.c intron 2 and BnaA.PSY.e

intron 3 were strikingly larger than their counterparts

(Table 1). Repetitive element searchers within the PSY

sequences identified a 227-bp fragment with homology to the

canonical telomeric repeat ATREP18 [50-(TTTAGGG)n-3
0] in

BnaA.PSY.e intron 3 (Supplemental Fig. S1).

High protein sequence similarity has been maintained in

these Brassica PSY gene families. All PSY proteins possess

an N-terminal transit peptide (TP) for plastid targeting and

two characteristic PSY signature motifs (PS01044 and

PS01045) (Fig. 3b). Deduced protein sequences from com-

plete ORFs varied in length from 414 to 424 amino acids and

TPs ranged from 65 to 75 amino acids (Table 1). Interest-

ingly, a Wu-Kabat variability plot of Brassica PSY protein

sequences revealed that most divergence is found at the

N-terminal region, which coincides with the location of the

plastid TP (Supplemental Fig. S2). The level of replacement

and synonymous site nucleotide divergence ratio (Ka/Ks)

indicates that all members are likely undergoing purifying

selection (Supplemental Table S2). This strongly indicates

that PSY proteins have evolved under functional constraint.

Fig. 1 DNA-SSCP analysis of

Brassica PSY gene families.

DNA-SSCP analysis revealed

the existence of at least three

PSY paralogues in B. rapa (a),

three in B. oleracea (b) and six

in B. napus (c). PCR was

performed on gDNA from

B. rapa (Bra), B. oleracea
(Bol) and B. napus (Bna).

The generated amplicon

spans part of PSY exon 1

(*250 bp). Cloned Brassica

PSY genes (BraA.PSY.a-c,

BolC.PSY.a-c and

BnaX.PSY.a-f) were used as

template controls to determine

banding patterns (lanes to the

left of each gDNA). Two strands

are shown for each gene

Fig. 2 Southern blot analysis of PSY genes in B. napus and its two

progenitor species. The presence of PSY gene families was detected

when a probe (611 bp) comprising part of exon 1, intron 1 and exon 2

of BnaA.PSY.b was used. Twelve micrograms of gDNA from

A. thaliana (At), B. rapa (Bra), B. oleracea (Bol) and B. napus
(Bna) were digested to completion with EcoRI and EcoRV
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Genome origins of the six BnaX.PSY homologues

Genome origins of the six BnaX.PSY genes were estab-

lished based on sequence identity and phylogenetic

analysis. The percentage of sequence identity for each pair

of Brassica PSY genes was determined and orthologies

inferred (Supplemental Table S3). Phylogenetic analysis

revealed that three homeologous gene pairs, BnaA.PSY.a/

BnaC.PSY.b, BnaA.PSY.f/BnaC.PSY.d and BnaA.PSY.e/

BnaC.PSY.c, exist in B. napus, with each BnaX.PSY gene

clustering with its predicted B. rapa or B. oleracea ortho-

logue (Fig. 4). Sequence similarities between orthologous

(93–100%) and homoelogous gene pairs were higher

(92–96%) than those observed between pairs of paralogous

genes in both diploid species (88–91%) and pairs of

homologous genes in B. napus (85–92%) (Supplemental

Table S3).

Segregation and linkage analyses using sets of specific

molecular markers developed for each of the B. rapa and

B. oleracea PSY genes (Supplemental Table S1) were

conducted in order to locate each paralogue in the context

of its genetic linkage position in the A or C genomes. PSY

genes mapped to chromosomes A2, A3 and A10 of B. rapa

and C2, C3 and C9 of B. oleracea (Fig. 5). In both diploid

genomes, Brassica PSY map positions corresponded to the

three collinear regions previously identified in silico by

comparative mapping with Arabidopsis. In addition, evo-

lutionary relationships of Brassica PSY genes could be

further confirmed from genetic map positions, with pairs of

orthologous genes (BraA.PSY.c and BolC.PSY.b, BraA.P-

SY.b and BolC.PSY.c, and BraA.PSY.a and BolC.PSY.a)

mapping to syntenic regions in the A and C genomes

(Fig. 5).

Table 1 Brassica PSY gene sequence analysis

PSY gene structure (bp) gDNA (bp) CDS (bp) Protein (aa) TP (aa)

E1 I1 E2 I2 E3 I3 E4 I4 E5 I5 E6

B. rapa

BraA.PSY.a 451 89 51 430 173 98 236 77 193 116 171 2,085 1,275 424 75

BraA.PSY.b 436 82 51 399 173 77 236 96 193 107 156 2,006 1,245 414 66

BraA.PSY.ca 436 98 51 680 173 77 236 90 193 104 119a 2,257a 1,208a 402a 65

B. oleracea

BolC.PSY.a 451 98 51 381 173 87 236 98 193 118 171 2,057 1,275 424 75

BolC.PSY.ba 436 81 51 394 173 83 236 95 193 107 143a 1,992a 1,232a 410a 65

BolC.PSY.ca 457 97 51 447 173 81 236 96 193 109 120a 2,060a 1,230a 410a 73

B. napus

BnaC.PSY.a 451 98 51 381 173 87 236 98 193 117 171 2,056 1,275 424 75

BnaA.PSY.b 448 96 51 455 173 80 236 77 193 118 171 2,098 1,272 423 74

BnaA.PSY.c 436 82 51 394 173 77 236 94 193 117 156 2,009 1,245 414 66

BnaA.PSY.da 442 87 51 450 173 83 73a – – – – 1,359a 739a 246a 67

BnaC.PSY.ea 457 98 51 422 173 549 236 96 193 109 119a 2,503a 1,229a 409a 73

BnaC.PSY.fa 436 81 51 394 173 64 73a – – – – 1,272a 733a 244a 65

For each gene, the length of exons (E1–E6), introns (I1–I5), genomic (gDNA), coding (CDS), predicted protein and plastid transit peptide (TP)

sequences are indicated. The presence of a 50UTR intron, as it exists in AtPSY, cannot be discarded
a Partial sequence

Fig. 3 Brassica PSY gene families. a Schematic representation of

Arabidopsis PSY gene (AtPSY, At5g17230) and the assembled contigs

generated for B. rapa (BraA.PSY.a-c), B. oleracea (BolC.PSY.a-

c) and B. napus (BnaX.PSY.a-f). Exons and introns are drawn to scale

and represented by boxes (E1–E6) and lines, respectively. Gene

structures were deduced from FGENESH predictions and alignment

analysis. For details, lengths of the exons and introns are shown in

Table 1. b Structure of Brassica PSY proteins. Chloroplast transit

peptide (TP) and phytoene synthase signatures (PROSITE patterns

PS01044 and PS01045) are depicted
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Brassica PSY gene expression analysis

In order to explore possible tissue-specific partitioning of

PSY gene expression, we investigated the expression pat-

terns of each of the 12 Brassica PSY homologues described

in this work. Gene expression profiling was determined by

RT-PCR followed by cDNA-SSCP analysis.

In B. rapa, all three PSY paralogues (BraA.PSY.a,

BraA.PSY.b and BraA.PSY.c) were expressed in cotyledons,

seedlings, mature leaves, roots and seeds (Fig. 6). Interest-

ingly, expression of paralogues Bra.A.PSY.a and BraA.PSY.b

was also detected in anthers and petals but no expression of

BraA.PSY.c was detected in floral tissues (Fig. 6).

Similarly, in B. oleracea expression of all three PSY

paralogues (BolC.PSY.a, BolC.PSY.b and BolC.PSY.c) was

detected in cotyledons, seedlings, mature leaves, roots and

seeds (Fig. 7). Paralogues BolC.PSY.a and BolC.PSY.c were

found to be expressed in anthers and petals throughout

flower development but paralogue BolC.PSY.b expression

was only detected at the earliest stage (stage 1; Fig. 7).

In B. napus, expression of homeologues BnaC.PSY.a

and BnaA.PSY.b was detected in all tissues (Fig. 8).

Interestingly, homeologues BnaA.PSY.c and BnaC.PSY.e

exhibited preferential expression in floral tissues (Fig. 8).

Following an opposite trend, homoelogues BnaA.PSY.d

and BnaC.PSY.f were preferentially expressed in cotyle-

dons, seedlings, mature leaves, roots and seeds and barely

detected in floral tissues (Fig. 8).

Discussion

PSY gene families in B. napus and its diploid

progenitors

Phytoene synthase (PSY) catalyzes the first committed

reaction of the carotenoid biosynthetic pathway and has

been shown to be rate-limiting in B. napus seeds (Shew-

maker et al. 1999). This enzyme is encoded by a single

copy gene in Arabidopsis (Scolnik and Bartley 1994) but

the existence of PSY gene families has been documented in

several crop species including tomato (Bartley et al. 1992;

Bartley and Scolnik 1993), tobacco (Busch et al. 2002),

maize, rice, sorghum (Gallagher et al. 2004; Li et al.

2008a) and cassava (Arango et al. 2010). Taking into

account that diploid Brassica genomes are highly redun-

dant, each containing three Arabidopsis-like subgenomes,

one of the objectives of this study was to determine the

number of PSY genes present in B. napus (AACC) and its

progenitor species, B. rapa (AA) and B. oleracea (CC).

Based on the high nucleotide sequence similarity found

at the CDS level between Arabidopsis and Brassica species

(Lysak et al. 2005; Parkin et al. 2005; Iniguez-Luy et al.

2009), we were able to clone a total of 12 Brassica PSY

genes using an overlapping PCR strategy (Fig. 3). We

identified three paralogous PSY genes in each of the diploid

species, B. rapa (BraA.PSY.a-c) and B. oleracea

(BolC.PSY.a-c) and three pairs of homoelogous PSY genes

Fig. 4 Phylogenetic

relationship among Brassica

PSY genes. The evolutionary

history was inferred using the

neighbor-joining method. The

tree is drawn to scale, with

branch lengths in the same units

as those of the evolutionary

distances. There were a total of

938 positions in the final dataset

covering exons 1–3. Analyses

were conducted using MEGA4

(Tamura et al. 2007). Using the

estimated divergence time of

15–20 million years ago (MYA)

for the split between

Arabidopsis and the tribe

Brassiceae (Yang et al. 1999),

the genome triplication date was

estimated to be 11–15 MYA
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in B. napus (BnaX.PSY.a-f). With six members, B. napus

has the largest PSY gene family described to date. Three

independent methods (i.e. cloning, Southern blot and

DNA-SSCP analyses) confirmed these findings (Figs. 1, 2,

3).

Sequence comparison between AtPSY and Brassica PSY

genes revealed a highly conserved exon–intron structure

exhibiting identity percentages above 85% at the CDS level

(Table 1; Supplemental Table S3). All PSY proteins share

two conserved sequence motifs (Fig. 3b) and possess a

predicted N-terminal transit peptide (TP) for plastid tar-

geting (Table 1). As seen in other PSY proteins (Busch

et al. 2002; Gallagher et al. 2004; Welsch et al. 2008;

Arango et al. 2010), this N-terminal TP region was found

to exhibit the highest level of sequence divergence among

Brassica PSY proteins (Supplemental Fig. S2). These TPs

are sufficient and specific to target proteins to plastids, but

the underlying molecular mechanisms are not fully

understood, mainly because these peptides exhibit high

sequence diversity and high heterogeneity (Li and Chiu

2010). Previous studies have shown that protein import is

facilitated by multimeric protein complexes (translocons)

in the outer (Toc) and inner (Tic) envelope membranes of

plastids that recognize and bind TPs (Bauer et al. 2000). In

Arabidopsis, AtToc159 has been proposed to be a receptor

with specificity for photosynthetic proteins, whereas

AtTOC132 and AtToc120 have specificity for non-photo-

synthetic proteins (Kubis et al. 2004). Functional charac-

terization of TPs would help determine whether Brassica

PSY proteins are preferentially targeted to distinct plastids

(e.g. chloroplasts vs. chromoplasts).

The level of replacement and synonymous site nucleo-

tide divergence ratio (Ka/Ks) revealed that all Brassica PSY

genes are likely undergoing purifying selection. Moreover,

Ka/Ks ratios between PSY family members were found to be

\0.35 for all pairs tested, which strongly indicates high

Fig. 5 Retention of PSY syntenic orthologues in B. rapa and B.
oleracea genomes. Map position of Brassica PSY genes on a B. rapa
chromosomes A2, A3 and A10 and b B. oleracea chromosomes C2,

C3 and C9. Marker locus names and distances (cM) are located to the

right and left of each chromosome, respectively. Bold marker loci

represent Brassica PSY genes. Map positions were calculated from

two rapid cycling populations (BraIRRi and BolTBDH) described by

Iniguez-Luy et al. (2009)
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function constraint of protein evolution (Supplemental

Table S2). This is not surprising; structural and functional

analyses in several plant species have shown that PSY

together with isopentenyl diphosphate isomerase (IPI) and

geranylgeranyl diphosphate synthase (GGPS) form a

plastid envelope membrane-associated multi-enzyme

complex (Schledz et al. 1996; Fraser et al. 2000). Such

complex has been proposed to be essential for optimizing

biosynthesis in vivo, by enabling the channeling of

hydrophilic precursors to phytoene, avoiding unfavorable

equilibria and isolating intermediate metabolites from

competing reactions (Fraser et al. 2000). This high func-

tional constraint might be one of the reasons why overex-

pression of PSY transgenes from different sources exerted

different metabolic effects in transgenic plants (Ducreux

et al. 2005; Paine et al. 2005) since different PSY proteins

could differ in their ability to form fully functional protein

complexes leading to different balances of produced

carotenoids (Lindgren et al. 2003; Osborn et al. 2003). In

this context, the battery of Brassica PSY genes presented in

this paper could be used in genetic engineering strategies

aimed at enhancing carotenoid content in oilseed crops

with the potential of reaching higher levels than previously

reported (Shewmaker et al. 1999; Paine et al. 2005).

Brassica PSY gene family expansion dates

to paralogous subgenome triplication event

In this study, a total of 12 Brassica PSY genes were iden-

tified (Fig. 3). Gene copy number, sequence identity,

genetic map positions and phylogenetic relationships

indicate that these PSY gene family members correspond to

three paralogous copies in B. rapa (BraA.PSY.a-c) and

B. oleracea (BolC.PSY.a-c) and three homeologous gene

Fig. 6 Analysis of PSY gene expression in B. rapa. a C cotyledon, Sd
seedling, L leaf, R root, S developing seeds (stages 1–4); developing

flowers, A anther (stages 1–2), P petal (stages 1–3). b BraA.PSY gene

expression was determined by RT-PCR (upper panel). B. rapa ACTIN

control (lower panel). c cDNA-SSCP analysis. RT-PCR products

were examined by SSCP to elucidate the expression patterns of each

B. rapa PSY paralogue. Bra, B. rapa gDNA control; BraA.PSY.a-c,

cloned Brassica PSY gene controls; WC, water control
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pairs (BnaA.PSY.a/BnaC.PSY.b, BnaA.PSY.f/BnaC.PSY.d

and BnaA.PSY.e/BnaC.PSY.c) in B. napus (Figs. 3, 4, 5;

Supplemental Table S3). Using the estimated divergence

time of 15–20 million years ago (MYA) for the split between

Arabidopsis and the tribe Brassiceae, the phylogenetic

relationship among the studied PSY genes places the genome

triplication in the Brassica ancestor 11–15 MYA. This esti-

mation is consistent with the reported paralogous subgenome

triplication of diploid Brassica species (Yang et al. 2006). In

addition, the fact that the highest levels of sequence identities

were found between pairs of orthologous genes (Supple-

mental Table S3) suggests that most divergence in this gene

family occurred before the speciation of B. rapa and B. ol-

eracea. Altogether, these data indicate that PSY gene family

expansion preceded the speciation of B. rapa and B. oleracea

and all studied Brassica PSY genes evolved from the same

ancestral gene.

Brassica PSY gene family members exhibit overlapping

redundancy and early signs of subfunctionalization

Due to the highly conserved nature of these 12 Brassica

PSY genes, we characterized their individual tissue-specific

and developmental patterns of expression using cDNA-SSCP

Fig. 7 Analysis of PSY gene expression in B. oleracea. a C cotyledon,

Sd seedling, L leaf, R root, S developing seeds (stages 1–4);

developing flowers, A anther (stages 1–2), P petal (stages 1–3).

b BolC.PSY gene expression was determined by RT-PCR (upper
panel). B. oleracea ACTIN control (lower panel). c cDNA-SSCP

analysis. RT-PCR products were examined by SSCP to elucidate the

expression patterns of each B. oleracea PSY paralogue. Bol,
B. oleracea gDNA control; BolC.PSY.a-c, cloned Brassica PSY gene

controls; WC, water control
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analysis (Figs. 6, 7, 8). In photosynthetic tissues (chloro-

plast-rich) we followed PSY expression in cotyledons,

seedlings and mature leaves. To study chromoplast-rich

tissues, we dissected flower buds and flowers at three dif-

ferent developmental stages and followed PSY expression

in anthers and petals. It is worth mentioning that chloro-

plast to chromoplast transition occurs early during petal

development (Weston and Pyke 1999; Egea et al. 2010).

Petals and anthers collected at stage 1 are typically green

and petals and anthers at stages 2 and 3 should be con-

sidered to have transitioned and contain mainly chromop-

lasts (Figs. 6a, 7a, 8a).

In these three Brassica species, all PSY homologues are

expressed, exhibiting overlapping redundancy and signs of

subfunctionalization. In B. rapa and B. oleracea, expres-

sion of orthologous gene pairs BraA.PSY.a/BolC.PSY.a and

BraA.PSY.b/BolC.PSY.c was detected in all tissues,

whereas expression of orthologous genes BraA.PSY.c and

BolC.PSY.b was not detected in chromoplast-rich stages of

petal development (Figs. 6, 7). In B. napus, expression of

homeologues BnaC.PSY.a and BnaA.PSY.b were detected

in all tissues, but homeologous gene pairs BnaA.PSY.c/

BnaC.PSY.e and BnaA.PSY.d/BnaC.PSY.f exhibited pref-

erential expression in chromoplast and chloroplast-rich

Fig. 8 Analysis of PSY gene expression in B. napus. a C cotyledon,

Sd seedling, L leaf, R root, S developing seeds (stages 1–4);

developing flowers, A anther (stages 1–2), P petal (stages 1–3).

b BnaX.PSY gene expression was determined by RT-PCR (upper
panel). B. napus ACTIN control (lower panel). c cDNA-SSCP

analysis. RT-PCR products were examined by SSCP to elucidate the

expression patterns of each B. napus PSY gene. Non-informative gel

space was cut out to reduce figure size. Bna, B. napus gDNA control;

BnaX.PSY.a-f, cloned Brassica PSY gene controls; WC, water control
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tissues, respectively (Fig. 8). Previous studies have used

cDNA-SSCP analysis to follow paralogous gene expres-

sion in cotton (Adams et al. 2003) and barley (Federico

et al. 2006), describing the occurrence of organ-specific

reciprocal paralogue silencing. This reciprocal silencing of

genes that encode nearly identical proteins could be func-

tionally and selectively important for dosage effect reasons

(Birchler et al. 2001, 2005; Osborn et al. 2003; Freeling

and Thomas 2006; Edger and Pires 2009).

Retention of triplicated PSY genes in B. napus and its

diploid progenitors

In Arabidopsis, the flexibility and response capabilities to

control the flux of the carotenoid biosynthetic pathway are

limited to regulating PSY, a single copy enzyme (Scolnik

and Bartley 1994). In species that contain more than one

PSY gene, such as the grasses, tomato and potato to name a

few, gene duplication has resulted in the subfunctional-

ization of gene expression (Bartley et al. 1992; Bartley and

Scolnik 1993; Li et al. 2008b). Since carotenoids and

chlorophylls are required to accumulate in a defined stoi-

chiometric ratio in chloroplasts and the synthesis of both

pigments share GGPP as a common substrate (Maass et al.

2009; Cazzonelli and Pogson 2010), the subfuntionaliza-

tion of PSY expression provided a mechanism that allowed

for PSY overexpression in flowers, fruits, seeds or tubers,

where PSY has been shown to be rate-limiting (Maass et al.

2009; Shewmaker et al. 1999) without the detrimental

effects that excessive carotenoid accumulation throughout

the plant would have caused on photosynthesis (Busch

et al. 2002).

Carotenoid accumulation in chromoplasts of flowers and

fruits, albeit not essential for plant metabolism, contributes

to plant fitness (Ehrenreich and Purugganan 2006; Galpaz

et al. 2006; Howitt and Pogson 2006). Thus, functional

retention of Brassica PSY genes could be explained by the

selective advantage provided by increased levels of gene

product (Force et al. 1999; Gu et al. 2003; Osborn et al.

2003) in chromoplast-rich tissues and concomitant carot-

enoid accumulation in petals. Dosage effects have been

observed for many genes, including key regulators of

developmental processes, in both diploid and polyploid

species (Birchler et al. 2001, 2005; Osborn et al. 2003;

Freeling and Thomas 2006; Edger and Pires 2009). The

existence of convergent PSY duplications among mono-

cotyledonous and dicotyledonous species as well as the

subfunctionalization of PSY expression among photosyn-

thetic and non-photosynthetic organs is consistent with this

idea. Clearly, the case of Arabidopsis represents an

exception to the gene balance hypothesis (Birchler and

Veitia 2010) since PSY exists as a single copy gene in spite

of genome duplications (Blanc et al. 2003). Notably,

Arabidopsis bears white flowers that do not contain chro-

moplasts (Pyke and Page 1998). Additionally, carotenoid

synthesis under stress conditions could have been adaptive

in many species (Gallagher et al. 2004; Arango et al. 2010).

In this regard, it remains to be established whether stress-

induced production of ABA in roots is mediated by par-

ticular PSY homologues in these Brassica species.

Acknowledgments We would like to thank Dr. Heiko Becker and

an anonymous referee for their helpful and constructive comments

which have improved the contents of this manuscript. The authors

would also like to thank Cristell Navarro and Hector Urbina for

bioinformatics support and Fernando Westermeyer and Daniela

Quezada for their technical assistance. This research was funded by

CONICYT through Fondecyt project 1090726 and Agriaquaculture

Nutritional Genomic Center, CGNA, CONICYT-Regional, GORE La

Araucanı́a (R10C1001). We acknowledge INIA for its support pro-

viding infrastructure. Bilateral collaboration was supported by

CONICYT No. 018/DRI/216.

References

Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes

duplicated by polyploidy show unequal contributions to the

transcriptome and organ-specific reciprocal silencing. Proc Natl

Acad Sci USA 100:4649–4654
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